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a b s t r a c t

Solving groundwater remediation optimization problems based on proxy simulators can usually yield
optimal solutions differing from the “true” ones of the problem. This study presents a new stochastic
optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated
solution method for simultaneously addressing modeling uncertainty associated with simulator residu-
als and optimizing groundwater remediation processes. This is a new attempt different from the previous
eywords:
roundwater remediation
emediation design
imulation
ptimization
ultivariate analysis

modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil
porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model
residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered),
the model has the advantages of providing mean-variance analysis for contaminant concentrations, mit-
igating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level
of optimal remediation strategies to system designers, and reducing computational cost in optimization
odeling uncertainty processes.

. Introduction

Currently thousands of aquifers have been contaminated due
o leakage of petroleum hydrocarbons from underground storage
anks or pipelines in Canada [1]. This has posed significant risks to
nvironmental quality and human health [2]. Therefore, a number
f in situ remediation techniques have been applied for removing
etroleum contaminants from soil and groundwater [3]. To facili-
ate remediation designs, researchers have developed a number of
ntegrated simulation and optimization models to provide decision
upport for identifying the most cost-effective groundwater reme-
iation strategies. Simulation models were used to forecast the fate
f contaminants in subsurface environments under various condi-
ions, while optimization ones were to screen an optimum design
rom a variety of potential alternatives.

Previously, a large number of studies were focused on
eveloping simulation-based optimization approaches for design
f groundwater remediation systems [4–14]. Some researchers

ttempted to directly incorporate a simulator into an optimiza-
ion formulation, with the outputs from each simulation run being
sed to check whether or not the environmental and/or hydraulic
onstraints are satisfied [15,16]. Nevertheless, some preferred to
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replace the simulator with an approximated linear/quadratic tran-
sition/statistical one (referred to as proxy simulator) and then
linked to the optimization formulation. Due to the reduced compu-
tational cost, many remediation systems were designed by solving
optimization formulations based on the outputs from proxy simu-
lators instead of original numerical simulators.

In detail, Cooper Jr. et al. [17] presented a simulation/regression/
optimization (S/R/O) approach to predict, analyze, and optimize an
oil recovery process. The application of the S/R/O approach to a
simple representative problem revealed its capability in helping
make cost-effective operation and management decisions. A num-
ber of power-form nonlinear regression equations were provided
to describe relationships between system responses and time-
varying water-pumping rates. McPhee and Yeh [18] presented
an approach to solving groundwater management problems with
reduced computational cost. In the approach, they used a simple
model governed by an ordinary differential equation (i.e. proxy-
model) to replace a groundwater flow model governed by a partial
differential equation. Results from the models comparison showed
that the proxy-model was able to reproduce head variations in
the flow domain with good accuracy. He et al. [19] proposed a

simulation-based fuzzy chance-constrained programming model
based on the concept of possibility. Application of the model to a
practical site showed that the model has the capabilities of handling
fuzzy simulation and optimization problems, providing a possibil-
ity indicating how much degree one can believe the decision results,

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:li.he@ryerson.ca
dx.doi.org/10.1016/j.jhazmat.2009.11.060
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nd alleviating the computational burdens in finding the optimal
olutions. He et al. [20] used a coupled simulation–optimization
pproach to supporting groundwater remediation design under
arameter uncertainty. A remediation design model was then
olved by introducing a set of proxy simulators. Results showed
hat the introduced approach was useful for alleviating computa-
ional cost in searching for optimal solutions and giving confidence
evels for the obtained optimal remediation strategies.

Although the above efforts were useful for increasing compu-
ational efficiency, a major concern still needs to be addressed
egarding the mathematical-modeling uncertainty arising from
esiduals introduced by proxy simulators. While considerable
fforts have been made to improve proxy-simulator precision,
esiduals unavoidably exist resulting from model assumptions, sta-
istical samples, model structures, and computational errors. One
an hardly conclude whether or not this uncertainty can be ignored
ue to propagation of residuals in optimization processes. Virtu-
lly even if the residuals were small enough, the obtained optimal
olutions probably deviate from the “true” ones of the problems
o a large extent, due to the approximation errors. However, the
revious studies seldom attempted to investigate and mitigate the

mpact of modeling uncertainty on optimization results.
Taguchi [21] proposed a dual-phase response analysis (DPRA)

ethod to handle modeling uncertainty in production manage-
ent systems. The principal idea was to fit two proxy simulators

espectively for the mean and variance of the response vari-
ble. DPRA was capable of providing a good estimate for solving
ptimization problems with the requirement of simultaneously
chieving a target value and keeping the variance small; there-
ore, it has many applications to industrial management [22–24]. In
ractice, however, one could be faced with the need of determining
he weights required for the resulting multi-objective optimiza-
ion problem [23], or of quantifying the allowable variances for the
onverted single-objective one [22]. Besides, DPRA cannot provide
ome essential information such as a confidence level to reflect how
uch one can believe the generated optimal remediation strate-

ies.
To address the abovementioned concerns, this study attempts

o develop a stochastic optimization model under modeling uncer-
ainty and parameter certainty (SOMUM). In the model, the
ncertainty to be addressed is associated with the residuals gener-
ted by the introduced proxy simulators; the parameter certainty
ndicates that the potential errors in parameter estimations are not
aken into account (investigation of both modeling and parame-
er uncertainties will be conducted in the ongoing study). This is a
ew attempt different from the previous efforts [19,20]. The previ-
us ones focused on addressing individual uncertainty in physical
roperties (e.g., soil porosity), while this one aims to particularly
eal with uncertainty in mathematical modeling.

The study is introduced in two parts, with each one occupy-
ng a full paper. In this first part, formulation of the model is
resented, where uncertainties stemming from simulator resid-
als are regarded as random variables and then incorporated.

t is expected that such a model can support optimal design of
roundwater remediation systems under modeling uncertainty. A
olution method and discussion are also provided in this part. In
he second companion paper, the model will be applied to a practi-
al petroleum-contaminated site in western Canada. Results from
ypothetical tests, optimal design and models comparison will also
e presented.
. Modeling formulation

The goal of the design model is to determine optimal remedi-
tion strategies, subjected to constraints imposed by the physical
aterials 176 (2010) 521–526

nature of the problem [25]. While the objective of the model could
be the minimization of total remediation cost, this model used the
total pumping rate of all injection and extraction wells considering
the difficulty in obtaining the unit cost for well installation, oper-
ation and maintenance [15]. The model is subject to a number of
technical, water-balance and environmental constraints, and can
be formulated as follows [26,27]:

Minimize TR =
I+J∑
i=1

qi (1a)

s.t. 0 ≤ qi ≤ qi,max for all i = I + 1, I + 2, . . . , I + J (1b)

I∑
i=1

qi =
I+J∑

i=I+1

qi (1c)

ck(q1, q1, . . . , qI+J) ≤ MCL for all k = 1, 2, . . . , K (1d)

where TR is total pumping rate for all injection/extraction wells; I
and J are the number of injection and extraction wells, respectively;
q1 to qI are decision variables, indicating the pumping rate at injec-
tion wells, respectively; qI+1 to qI+J are decision variables, indicating
the pumping rate at the extraction wells, respectively; qi,max is
maximum pumping rate for the ith well; ck is contaminant concen-
tration of well k after a period of remediation, which is computed
through a three-dimensional multiphase multi-component simu-
lator; MCL is maximum contaminant level which is determined in
terms of the given environmental standard.

The objective function may also be total pumping rate, and total
injection (or extraction) rate. This mainly depends on the require-
ment of system designers and the available data information. The
sum of injection (or extraction) rates could be a good alternative in
formulating this problem. However, in terms of the requirement of
system designers, the optimal injection and extraction rates should
be simultaneously obtained. If the total injection rate is used as the
objective function, then only the optimal pumping rates at injec-
tion wells can be identified, with those at extraction wells being
unknown. Similarly, the total extraction rate was not selected as
the objective function.

Constraints (1b) and (1c) are technical restrictions regulating
the injection and extraction pumping rates to be limited within
specified practical operating intervals; the lower bound is allowed
to be zero, while the upper one is determined according to technical
alternatives and site characteristics. Eq. (1d) is proposed to guaran-
tee all extracted groundwater are treated and re-injected into the
aquifer [7,28]. Constraint (1e) is initiated to satisfy the environmen-
tal restriction, which requires the contaminant concentrations at all
monitoring wells should be less than environmental standard. The
concentrations are predicted through a three-dimensional multi-
phase multi-component simulator.

In the simulation, the flow of multiple (e.g., water and residual)
phases, mass transfer of species between the phases, and trans-
port of species in each of the phases should be addressed [29,30].
However, the processes can hardly be described by a conventional
solute transport simulator. A three-dimensional multiphase multi-
component simulator was thus used to predict the concentrations
of dissolved contaminants in the groundwater. The previous studies
have demonstrated the effectiveness of this simulator in rep-
resenting the complex processes involved in multiphase flow
and transport of multi-components in subsurface environments
[20,31]. The basic mass conservation equation for components in

the subsurface can be written as [29]:

∂

∂t
(�C̃m�m) + �∇ ·

[
np∑
l=1

�m(Cml �ul − �Sl
��Dml · �∇Cml)

]
= Rm (2)
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Table 1
Part of modeling parameters input to the simulator.

Parameter Value Unit

Residual water saturation 0.10 –
Residual oil saturation 0.20 –
Residual gas saturation 0.10 –
Permeability of sandy soil in x, y, and z direction 2900 MD
Permeability of clay till in x, y, and z direction 195 MD
Permeability of silty clay in x, y, and z direction 380 MD
Porosity of sandy soil 0.35 –
Porosity of till 0.30 –
Porosity of silty clay 0.53 –
NAPL/water interfacial tension 45 Dyne/cm
NAPL density 0.713 g/cm3

Longitudinal dispersivity of sandy soil 5 m
Longitudinal dispersivity of clay till 5 m
Longitudinal dispersivity of silty clay 5 m
Transverse dispersivity of sandy soil 0.5 m
Transverse dispersivity of clay till 0.5 m
Transverse dispersivity of silty clay 0.5 m
Hydraulic gradient 0.003 m/m
NAPL/water partition coefficient of benzene 0.00203 –
Benzene solubility 1750 mg/L
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Time step at t = 0 0.101 Day
Maximum time step size 100 Day
Tolerance for concentration change 0.001 –

here m is component index; l is phase index; � is porosity; C̃m

s overall concentration of component k (volume of component m
er unit pore volume); �m is density of component k [M L−3]; np is
umber of phases; Cml is concentration of component k in phase l
volume fraction); �ul is Darcy velocity of phase l [L T−1]; Sl is satura-
ion of phase l (volume of phase l per volume of pores); Rm is total
ource/sink term for component m (volume of component m per
nit volume of porous media per unit time); C̃m is volume of compo-
ent m summed over all phases. Sl = saturation of phase l (volume of
hase l per volume of pores); Rm = total source/sink term for compo-
ent m (volume of component m per unit volume of porous media

er unit time) [L3 L−3 T−1]; ��Dml = dispersion tensor.
The simulator can be solved numerically with a block-centered

nite difference model [31]. The solution procedures are solving
he pressure equation implicitly using a Jacobi conjugate gradi-
nt solver to yield the water phase pressure in all grid blocks;
sing capillary pressures from the previous time step to determine
he pressure of other phases in each grid block once the water
hase pressure is known; determining phase velocities through
he Darcy’s law; yielding the concentration of each component in
ach grid block by explicitly solving the mass conservation equa-
ions; identifying phase concentrations and saturations through
ash calculations; determine new capillary pressures from the
ew saturations; repeating the procedures for each time step until
imulation ends. A third-order finite-difference method that can
reatly reduce numerical dispersion effects is used to solve these
quations. Aquifer boundaries were modeled as either constant
otential surfaces or closed surfaces. Table 1 shows part of param-
ters input to the simulator [14,31,40]. More details regarding
he full model are provided in the section of numerical simula-
or in the supplementary material. Other fundamental parameters
like hydraulic conductivity) was estimated by K = �gk/� where k
s intrinsic permeability, � is water viscosity, K is hydraulic con-
uctivity, � is water density, and g is acceleration due to gravity
41].

. Multivariate analysis
Fig. 1 shows the flowchart of the proposed optimization method
or solving model (1). The first step is numerical experiment design,
hich mainly includes selection and identification of the statis-
Fig. 1. Scheme of the stochastic optimization approach.

tical samples involving explanatory and response variables. In
this study, the explanatory variables are injection and extraction
rates of pumping wells while the response variables are contam-
inant concentrations. The statistical samples were obtained by
computer-assisted random sampling within the ranges of pumping
rates. The second step is to create a set of proxy simulators through
stepwise response surface analysis (SRSA) to capture the relation-
ships between explanatory and response variables. The third step
is to test the hypotheses of normality and zero-means for the
residuals generated by proxy simulators. If the hypotheses can be
statistically accepted, then a direct bridge between the simulation
and optimization processes would be created; based the bridge,
model (1) can be converted to model (17) which will be introduced
later. Finally, this problem is transformed to an equivalent deter-
ministic problem and then solved by nonlinear optimization solvers
like Lingo 8.0. When the proxy simulators are generated through
multivariate analysis, they can be represented as a set of Lingo
codes (referred to as simulation module). To seek the optimal solu-
tion of the SOMUM model, an optimization module (also written
as another set of Lingo codes) needs to be run to check the envi-
ronmental constraints based on the outputs from the simulation
module. Note that other conventional optimization algorithms than
Lingo can also be used such as gradient algorithm and genetic algo-
rithm. The following sections describe the detailed procedures of
SRSA and statistical tests, as well as the formulation of the SOMUM
model.

3.1. Stepwise response surface analysis

Response surface analysis (RSA) aims at empirically quantifying
the relationship between response variables and explanatory vari-
ables [32,33]. RSA needs to establish two empirical models—one
for the mean and one for the standard deviation [34]. The least
squared fitting is a general means of determining coefficients in the
two models, according to which the optimal setting is thus charac-
terized for the explanatory variables that maximize (or minimize)
the response. Consider one response variable (cp

k
) representing the

contaminant concentration predicted by the proxy simulators for
well k. Then cp

k
is assumed to be a polynomial function (i.e. proxy

simulator) of a set of explanatory variables (q1, q2, . . ., qI+J), which
can be formulated as:
cp
k

= a0,k +
I+J∑
i=1

ai,kqi +
I+J∑
i=1

I+J∑
j=1

aij,kqiqj(i /= j) +
I+J∑
i=1

aii,kq2
i + ek (3)
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here a0,k,

I+J∑
i=1

ai,kqi,

I+J∑
i=1

I+J∑
j=1

aij,kqiqj(i /= j),

I+J∑
i=1

aii,kq2
i

and ek are

ntercept, linear, interaction, quadratic and residual terms of the
roxy simulator for well k, respectively. Model (3) can be used to
apture the relationships between contaminant concentrations and
perating conditions. Two concerns should be considered in this
tep: one is the increased complexity of the proxy simulator due to
portion of statistically insignificant terms being introduced need-

essly; the other is the decreased accuracy of the proxy simulator
aused by another portion of statistically significant terms being
gnored arbitrarily. Stepwise RSA (SRSA) is a useful technique for
ackling these concerns, since it supports automatic selection of

odels in cases where a large number of potential explanatory vari-
bles exist and no prior knowledge on which to base the selection
f proxy simulators.

SRSA includes forward selection and backward elimination
22,34]. The forward selection starts with a proxy simulator with-
ut any explanatory variable (or the coefficients of all variables are
ero). In the first step, the variable with the smallest p-value is
dded in the proxy simulator; then each following step supple-
ents the variable that has the smallest p-value in the presence

f the variables already in the proxy simulator. Variables are added
ne-at-a-time as long as their p-values are smaller than a given crit-
cal value (which was determined to be 0.05 in this study). In each
tep of forward selection, the model coefficients can be obtained
hrough least square method. Comparatively, backward elimina-
ion begins with all explanatory variables presented in the proxy
imulator. In each step, the variable with the least significant level
i.e. the largest p-value) is eliminated and the model is refitted using
east square method. Each subsequent step removes the least signif-
cant variable in the proxy simulator until all remaining variables
ave an individual p-value larger than a provided criterion (e.g.,
.95).

In terms of the algorithm for SRSA, the p-value can be defined
s the probability of the F-value greater than the F-statistic:

=

(∑N
u=1cnum,u − c̄pro

)
/(N′ − 1)(∑N

u=1cnum,u − cpro,u

)
/(N − N′)

(4)

here cnum,u and cpro,u are concentrations predicted through
umerical and proxy simulators, respectively, for the uth sampling;

¯pro is the average of concentrations predicted through proxy sim-
lators; N′ is the number of sample groups; N is the number of
amples. Based on the F-value, the p-value can be calculated from
n F-distribution table with the degrees of freedom being m − 1 for
he numerator and N − m for the denominator. In this study, N′ is
qual to 2 as only two groups of sampling data (one is obtained
rom the numerical simulator and the other one is from the proxy
imulators) are used.

.2. Tests of the residuals’ normality

The uncertainty associated with proxy-simulator residuals may
rise from inappropriate simulator forms, missing variables, biased
arameters or sampling errors. Before incorporating the residu-
ls into the optimization formulation, statistical analysis should
e undertaken to estimate the probability distribution functions,
eans, and standard deviations. In the analysis, the residual of

he proxy simulator for well k (ek) is assumed to be (i) indepen-

ent random variables (i.e. �k = 0) and (ii) normally distributed
ith mean zero and unknown standard deviations (�2

k
). Therefore,

wo hypotheses are used: one is for goodness-of-fit test of distri-
utions, and the other is for the zero-mean hypothesis test. In this
tudy, the Lilliefors and Jarque–Bera tests are both applied to assess
aterials 176 (2010) 521–526

whether the normality hypothesis can be accepted. The null and the
alternative hypotheses for the JB-test are

H0 : ek∼N(�k, �2
k ), and H1 : not H0 (5)

3.2.1. Lilliefors test
The Kolmogorov–Smirnov test was originally proposed to check

whether a sample comes from a population with a specified
distribution. This test is not appropriate for the samples with
unknown population parameters such as the average and deviation.
Therefore, Lilliefors [35] improved the test under the normality
hypothesis when the average and deviation are not specified. The
null and the alternative hypotheses for the Lilliefors test (L-test) are
the same as those for the JB-test. This test is similar to but improves
the Kolmogorov–Smirnov test by adjusting the parameters with
normal distributions that are estimated from ek rather than speci-
fied in advance [35]. Let ēk be the unbiased population parameter,
�k, which is calculated by

ēk =
N∑

u=1

ek,u

N
(6)

where ek,u is the residual of the proxy simulator for well k for sam-
ple u, and N is the number of samples. Form the order statistics
(from smallest to largest) ek(1), ek(2), . . ., ek(N) and let s2

k
denote the

unbiased population parameter, �2
k

, which is calculated by

s2
k =

N∑
u=1

(ek,u − ēk)2

N − 1
(7)

Standardize each sample with

e′
k,u = ek,u − ēk

sk
(8)

Let F(z) be the empirical distribution function of the population,
which is equal to the number of e′

k,u
/N for every z, and ˚(z) be

the standard normal cumulative distribution function. The Lilliefors
test statistic (defined as L) can then be calculated with the maxi-
mum vertical distance between F(z) and ˚(z), which is [36]:

L = sup
z

{|F(z) − ˚(z)|, −∞ ≤ z ≤ ∞} (9)

For a population with N samples, reject H0 in favor of H1 at a
significance level (˛) when and only when L exceeds the upper per-
centage point L(˛)(N). The percentile points L(˛)(N) is approximated
using Monte Carlo simulation for each sample size N.

3.2.2. Jarque–Bera test
The Jarque–Bera test (JB-test), proposed by Bera and Jarque [37],

can be used to evaluate the hypothesis that whether a random vari-
able is normally distributed. This test is based on the difference
between the skewness and kurtosis of statistical samples and those
of normal distributions [38]. The skewness is calculated to deter-
mine if the distribution is symmetric and the kurtosis is used to
evaluate how fat the tails of the distribution are. The JB statistic is
given by

JBk = N

[
sk2

k

6
+ (kuk − 3)3

24

]
(10)
where skk and kuk are skewness and kurtosis of residuals of the
proxy simulator for well k, respectively, which are calculated by

skk =
∑N

u=1(ek,u − ēk)3/N

�3
k

(11)
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uk =
∑N

u=1(ek,u − ēk)4/N

�4
(12)

2
k =

∑N

u=1
(ek,u − ēk)2/N (13)

he JB statistic has an asymptotic distribution that follows a Chi-
quared distribution (�2

(2)) under the null hypothesis of normality.
t should be noted that this test is merely effective for big samples,

ith the population size over 30.

.2.3. The t-test
The t-test is used to evaluate the hypothesis that whether a sam-

le from a normal distribution could have an average equal to a
onstant under unknown deviation. The null (H0) and alternative
H1) hypotheses for the t-test are

0 : � = �k = 0, and H1 : � /= �k = 0 (14)

he t-statistic is calculated by

k = ēk − �k

sk/
√

N
∼t(N − 1) (15)

here t(N − 1) is statistic value under the student distribution with
degree of freedom being N − 1. For a two-sided t-test under the

ignificance level of ˛, the rejection region is

= (−∞, −t˛/2(N − 1)] ∪ [t˛/2(N − 1), ∞) (16)

here t˛/2(N − 1) is critical value.

. Modeling formulation under uncertainty

If the statistical tests show that the two hypotheses can
e accepted, then the residuals are linked to the deterministic
ptimization formulation. Correspondingly, violations of environ-
ental constraints (1b) are expressed as a probability of the

ontaminant concentrations exceeding the environmental stan-
ard. Based on this consideration, model (1) is formulated as the
ollowing SOMUM model:

inimize TR =
I+J∑
i=1

qi (17a)

.t. 0 ≤ qi ≤ qi,max for all i = I + 1, I + 2, . . . , I + J (17b)

I

i=1

qi =
I+J∑

i=I+1

qi (17c)

r{cp
k
(q1, q1, . . . , qI+J) + ek ≤ MCL} ≥ � for all k = 1, 2, . . . , K (17d)

here Pr represents probability of constraint satisfaction and � is
onfidence level. In terms of Fig. 2, constraint (17e) can be con-
erted to a deterministic expression as follows [39]:

V [cp
k
(q1, q2, . . . , qI+J) + ek] − ˚−1(�) · �k ≥ cmax (18)

here EV is expected value, and ˚−1(�) is value of the standard nor-
al cumulative distribution corresponding to a confidence level of
. Thus, the SOMUM model is transformed to its equivalent deter-
inistic model composed of (17a)–(17d) and (18), which can be

olved by Lingo 8.0. The features of the model include: although all
odeling parameters are deterministic, problem (17) is stochastic

ecause the incorporated residuals are given by probability distri-

utions; additional outputs of the problem can be yielded as the

ntroduced control variable (�) is used to represent the confidence
evel of optimal solutions. Moreover, the model has two assump-
ions. One is that the correlations among residuals are small enough
o be ignored, which would be investigated in future studies. The
Fig. 2. Flowchart of the solution method.

other is that violations of environmental constraints due to the
use of proxy simulators are allowed to some extent, indicating the
risk of system failure (i.e. constraint violation) may exist (equal to
1 − �).

5. Discussion and conclusions

Solving optimal design problems based on proxy simulators
would yield optimal solutions that differ from the “true” ones of
the problems due to the approximation errors. The main concern
then is the approximation errors (even if they are small), which may
lead to large deviations between solutions; otherwise, extra efforts
need to be made for obtaining good approximations in order to
arrive at solutions with high precision. If this challenge cannot be
well handled, a risk of system failure could be raised, leading to a
decrease in the confidence level of optimal design strategies [42].
By introducing proxy-model residuals into the groundwater man-
agement formulation, the risk of system failure originating from
proxy-model residuals can be effectively controlled.

Based on this consideration, a set of proxy simulators were
created by SRSA to replace the initial numerical simulator.
The residuals generated by these proxy simulators are then
incorporated into optimal groundwater remediation design, thus
formulating a stochastic optimization problem under modeling
uncertainty (arising from modeling residuals) but parameter cer-
tainty. SRSA was selected to create proxy simulators and exclude as
many explanatory variables (e.g., pumping rates) as possible to mit-
igate computational time in the subsequent optimization process.
Through this algorithm, the variables without significant contri-
bution to modeling outputs (e.g., contaminant concentrations) are
removed step by step. In general, SRSA has the advantage of sup-
porting automatic selection of models in the cases where a large
number of potential explanatory variables exist and no prior knowl-
edge on which to base the model selection is available [18,39].
Another advantage is its capability in separately examining the
effects of each linear, interactive, or quadratic term on response
variables.

It should be mentioned that many other learning algorithms
such as linear and piecewise (or locally) linear regression can also be

used to create proxy simulators. Linear regression may cause signif-
icant errors although it is computationally efficient; in comparison,
piecewise (or locally) linear regression may need high computa-
tional support though they can produce results with low errors.
This study use SRSA where only linear, quadratic and interactive
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erms were considered. Future studies thus need to be undertaken
o investigate the prediction performance of proxy simulators with

ore terms (e.g., cubic terms) and the uncertainty in the resulting
roxy-models.

The SOMUM model has significant distinctions from previ-
us efforts [25]. Firstly, this model assumed that the errors of
roxy simulators exist and should be accounted for; the errors are
hen treated as stochastic variables. In comparison, the previous
epended on a hypothesis that the proxy simulators could per-
ectly approximate to the original simulator. Secondly, this study
ttempted to test the normality of residuals of proxy simulators
nd then incorporated the residuals into the optimization model,
hile the previous efforts ignored the effect of such residuals on

ptimal solutions. Thirdly, different algorithms were used; this one
elected a type of parametric statistical method, while the previ-
us ones used nonparametric ones. Difference of this effort from
he previous ones in modeling implications will be detailed in the
ollowing companion paper.
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